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1 | INTRODUCTION

Daydreaming refers to the occurrence

unrelated to one's current situation

of spontaneous thoughts
(Singer, 1975; Singer &

Abstract

Daydreaming and creativity have similar cognitive processes and neural basis. How-
ever, few empirical studies have examined the relationship between daydreaming
and creativity using cognitive neuroscience methods. The present study explored the
relationship between different types of daydreaming and creativity and their com-
mon neural basis. The behavioral results revealed that positive constructive
daydreaming is positively related to creativity, while poor attentional control is nega-
tively related to it. Machine learning framework was adopted to examine the predic-
tive effect of daydreaming-related brain functional connectivity (FC) on creativity.
The results demonstrated that task FCs related to positive constructive daydreaming
and task FCs related to poor attentional control both predicted an individual's crea-
tivity score successfully. In addition, task FCs combining the positive constructive
daydreaming and poor attentional control also had significant predictive effect on
creativity score. Furthermore, predictive analysis based on resting-state FCs showed
similar patterns. Both of the subscale-related FCs and combined FCs had significant
predictive effect on creativity score. Further analysis showed the task and the
resting-state FCs both mainly located in the default mode network, central executive
network, salience network, and attention network. These results showed that

daydreaming was closely related to creativity, as they shared common FC basis.
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creativity, daydreaming, functional connectivity, prediction

daydreaming, and this phenomenon covers 30-50% of our daily wak-
ing time (Christoff, Gordon, Smallwood, Smith, & Schooler, 2009;
Kane et al., 2007; Killingsworth & Gilbert, 2010; McMillan, Kaufman, &
Singer, 2013). As a complex and multifaceted construct, daydreaming

Schonbar, 1961; Smallwood & Schooler, 2006). Everyone experiences has been associated with both adaptive and maladaptive
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consequences (Fox & Beaty, 2019; McMillan et al., 2013; Ottaviani &
Couyoumdjian, 2013). One of its adaptive consequences is people's
heightened creativity when their minds wander (Zedelius &
Schooler, 2016). The relationship between daydreaming and creativity
has long been a lucrative topic for researchers.

Creativity is a complex concept, which is usually defined as the
ability to produce novel and useful outputs (Beaty, Benedek, Silvia, &
Schacter, 2016; Benedek, Jurisch, Koschutnig, Fink, & Beaty, 2020;
Runco & Jaeger, 2012; Sternberg & Lubart, 1996). From the perspec-
tive of cognition, daydreaming and creativity have similar cognitive
processes. They both have an unintentional generation stage and a
deliberate stage (Fox & Beaty, 2019). Daydreaming includes self-
generated thoughts, which is unrelated to the current situation or the
ongoing task (Smallwood & Schooler, 2006). This is a relatively spon-
taneous generation process (Fox & Beaty, 2019). This process is simi-
lar to the generation process of creativity, which involves the
searching processes through one's memory system to combine
remote associations and formulate original ideas (Christensen, Kenett,
Cotter, Beaty, & Silvia, 2018; Madore, Thakral, Beaty, Addis, &
Schacter, 2019; Sowden, Pringle, & Gabora, 2015). In addition,
daydreaming involves metacognitive awareness and intentional guid-
ance process, which is similar to the evaluation process of creativity
(Benedek et al., 2020; Christensen et al., 2018; Christoff et al., 2009;
Finke, Ward, & Smith, 1992). It is known that participants have the
ability to notice that their mind have wandered (Smallwood,
Mcspadden, & Schooler, 2007). Such metacognitive awareness might
contribute to the regulation of daydreaming directly or indirectly
(Schooler et al., 2011). For example, metacognitive awareness might
be conducive to the identification of daydreaming and the
of the
et al,, 2011). During the evaluation process about creativity, people

reengagement primary task subsequently (Schooler
assess the efficacy of their potential creative opinions, select and
modify these opinions to meet the goal of a creativity task
(Christensen et al., 2018; Madore et al., 2019; Sowden et al., 2015).
Recent studies on creativity further propose that creative cognition is
modulated by metacontrol state (Zhang, Sjoerds, & Hommel, 2020).
Both of daydreaming and creativity involve the top-down control pro-
cesses. Hence, we can easily infer that a positive correlation exists
between daydreaming and creativity, given their similarities. Psycholo-
gists hypothesized that daydreaming may facilitate creativity through
the reorganization of existing mental images and the formation of
remote and original associations (Shepard, 1978). Numerous experi-
mental studies support this opinion. In an early research, Singer and
Schonbar (1961) found the positive correlation between the fre-
guency of daydreaming and creativity. Meta-analytic showed that tak-
ing a break from divergent thinking task or switching to another
unrelated task for a period was helpful to the following creativity per-
formance (Sio & Ormerod, 2009). Empirical research demonstrated
that engaging in an undemanding task which permits daydreaming
was conducive to the performance of a creativity task (Baird
et al., 2012).

However, daydreaming is not always positively related to creativ-

ity. Some evidence has showed that daydreaming has a negative

impact on creativity. Hao, Wu, Runco, and Pina (2015) distinguished
high and low daydreaming groups on the basis of daydreaming fre-
quency. The researchers found that high daydreaming group had
lower fluency and originality scores during a divergent thinking task in
comparing with low daydreaming group. Furthermore, the originality
score decreased in the high daydreaming group as the task prog-
ressed. However, it remained stable for the low daydreaming group.
The researchers believed that this finding was reasonable because of
the attentional control process of daydreaming and creativity (Hao
et al, 2015). The executive-control-failure model posits that
daydreaming stems from the failure of executive control (Mcvay &
Kane, 2010). Daydreaming is determined by automatically generated
thoughts related to mental and environmental cues (Mcvay &
Kane, 2010); the executive-control process plays a role in dealing with
this interference. People who experience high amounts of
daydreaming are less efficient in keeping attention on the current task
than individuals who experience low amounts of daydreaming
(McVay & Kane, 2009, 2010). The loss of the attentional focus has an
adverse effect on the cognitive process of creativity and plays the
dark role in the relationship between daydreaming and creativity. Dur-
ing a creative task, individuals need to focus their attention on idea
generation to generate original ideas (Beaty et al., 2016). For instance,
Ostafin and Kassman (2012) found that creativity is positively related
to mindful awareness, which is adverse to daydreaming. The top-
down executive process helps the inhibition of the interference of
unrelated stimuli and ordinary response (Beaty & Silvia, 2012; Ben-
edek, Beaty, et al., 2014; Benedek, Jauk, Sommer, Arendasy, &
Neubauer, 2014; Fink, Graif, & Neubauer, 2009; Silvia & Beaty, 2012;
Silvia, Beaty, & Nusbaum, 2013; Takeuchi et al., 2012). It also aids in
searching and retrieving processes in working memory (Silvia
et al., 2013). The opposite needs of controlled and focused thought in
daydreaming and creativity lead to the inference that daydreaming is
detrimental to creativity.

Recent research asserts that daydreaming varies in styles and dif-
ferent kinds of daydreaming have various effects on creativity
(Zedelius & Schooler, 2016). Singer (1975) distinguished three styles
of daydreaming: positive constructive daydreaming, which was char-
acterized by planning, pleasant thoughts, vivid and wishful imagery,
and curiosity; guilty-dysphoric daydreaming, which was characterized
by obsessive, guilty, and anguished fantasies; and poor attentional
control, which was characterized by the inability to focus attention on
either the internal thoughts or the external tasks (Singer, 1975).
Although studies exploring the relationship among the different kinds
of daydreaming and creativity are still rare, some researchers support
the view that the relationship between daydreaming and creativity is
complex. Zhiyan and Jerome (1997) demonstrated that positive con-
structive daydreaming was positively associated with an individuals'
openness to experience, which was a kind of personality trait also
closely related to creativity. Research also links the negative associa-
tion between narrow focus of attention and creativity. Wegbreit,
Suzuki, Grabowecky, Kounios, and Beeman (2012) found that a broad
focus task (such as rapid object identification task) led to increased

insight performance in the following verbal creativity task; meanwhile,
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a narrow focus task (such as flanker task) led to predominantly ana-
lytic solutions.

Numerous studies have explored the brain basis underlying
daydreaming and creativity separately. Neural research highlighted
the role of the default mode network (DMN) and the executive net-
work (EN) and the limbic system in daydreaming (Golchert
et al., 2017). Using both thought sampling and brain imaging methods,
Mason et al. (2007) found that daydreaming during visuospatial
working-memory tasks was related to the recruitment of regions in
the DMN. In addition, self-reported daydream frequency was corre-
lated with the activity of regions in the DMN. Recent studies further
revealed that daydreaming was also represented in the dynamic func-
tional connectivities (FCs) of the DMN on a faster time scale
(Kucyi, 2018). In addition to DMN activation, daydreaming is associ-
ated with EN recruitment (Christoff et al, 2009). Christoff
et al. (2009) used experience sampling to measure daydreaming during
a concurrent task and observed a parallel recruitment of the DMN
and the EN. Mooneyham et al. (2017) examined the dynamic FC state
of brain regions within the DMN, the EN, and the salience network
(SN) when participants were engaging in a sustained attention task.
They found that the FC state associated with daydreaming exhibited
positive FC among several key brain regions across all three networks.
Golchert et al. (2017) combined both structure and functional data
and conducted a multimodal approach to explore the brain cortical
organization that underlies individual differences in daydreaming.
They found that higher reports of daydreaming were associated with
the structure and FC of regions in the DMN, the EN, and the limbic
system. Similar to the research on the neural basis of daydreaming, a
wide variety of neuroimaging studies about creativity have been con-
ducted, and have revealed several key brain areas which have been
implicated in creative tasks (Abraham, Beudt, Ott, & Cramon, 2012;
Dietrich & Kanso, 2010; Fink et al., 2009; Huang, Fan, & Luo, 2015;
Huang, Zhao, Zhou, & Luo, 2019; Sun, Liu, et al., 2019). Meta-analysis
studies of task-based fMRI revealed that the posterior parietal cortex,
the precuneus, the lateral prefrontal cortex, the temporal cortex, and
the anterior cingulate cortex were activated in fMRI tasks involved in
creativity-related processes (Gonen-Yaacovi et al., 2013; Pidgeon
et al, 2016; Wu et al., 2015). Recent neuroscientific investigations
tend to discuss the neural basis underlying creativity through brain
functional networks (Abraham, 2014; Beaty et al., 2016; Jung, Mead,
Carrasco, & Flores, 2013; Mok, 2014). Researchers have made an
agreement that during the cognitive process of creativity the DMN
devotes to the generation of novel ideas and the EN is involved in the
top-down process to allocation of cognitive resources. And the SN
plays a role in modulating the interaction between DMN and EN (Sun
et al., 2016). Although some differences exist, overlaps are present
between the key brain regions and brain networks of daydreaming
and creativity.

Based on above, the present study developed the scientific prob-
lem that whether daydreaming and creativity had common cognitive
and neural basis. Clarifying this problem will help us to understand the
potential mechanism of the interaction between daydreaming and cre-

ativity. The aim of the present study is to explore the relationship

between different kinds of daydreaming and creativity and the under-
lying common brain basis. To address the scientific problem and the
aim, we adopted machine learning based method in this study. We
hypothesized that different kinds of daydreaming would have various
correlations with creativity. Daydreaming and creativity shared a com-
mon neural basis. In addition, the subscale of daydreaming could pre-
dict creativity through brain FCs. Furthermore, the combinations of
the FCs related to these subscales could also predict creativity. To
examine these hypotheses, we combined behavioral data of
daydreaming and creativity and brain FCs data and constructed a
regression model based on machine learning framework to predict

participants' creativity scores.

2 | METHODS

2.1 | Participants

This study has two samples. The first sample included 94 participants
and all of them completed behavior measures and an fMRI task. The
second sample included 158 participants and participants completed
the behavior measure and resting-state fMRI scanning. All of the par-
ticipants were recruited from Southwest University, China and were
right-handed. These two samples had no overlaps. All participants met
the safety criteria of fMRI study with no history of neurological or
psychiatric illness. This study was approved by the Brain Imaging Cen-
ter Institutional Review Board at the Southwest University, China. In
accordance with the Declaration of Helsinki (1991), written informed
consent was obtained from all participants. Participants were
excluded whose head motions were greater than 3 mm maximum
translation or 3° rotations or mean frame-wise displacement (mean
FD) >0.2 mm during the fMRI scanning. Six participants in the first
sample and sixteen participants in the second sample were excluded
because of their excessive head motions. Finally, 88 participants in
the first sample and 142 participants in the second sample were
included in this study. The average age for the first sample was
21.24 years (range = 18-27, SD = 1.86, 27 males). The average age
for the second sample was 20.98 years (range = 18-26, SD = 1.50,

45 males).

2.2 | Behavioral measures

Participants completed the behavioral measures of Creative Behavior
Inventory (CBI) (Hocevar, 1979, 1980) and Short Imaginal Processes
Inventory (SIPI) (Huba, Singer, Aneshensel, & Antrobus, 1982; Huba &
Tanaka, 1983). CBl is a self-report questionnaire that measures crea-
tivity which includes 28 items. The CBI asked participants to indicate
their participation in various creative activities on a 4-point scale
(0 = never did this; 3 = did this more than five times). SIPI is a self-
report questionnaire that measures daydreaming which includes
45 items. subscales:

It contains three positive-constructive

daydreaming (e.g., “Sometimes an answer to a difficult problem will
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come to me during a daydream.”), guilt and fear-of-failure
daydreaming (e.g., “In my fantasies, a friend discovers that | have
lied.”), and poor attentional control (e.g., “l tend to be easily bored.”).
For each item, participants were asked to indicate the extent to which
each statement applies to themselves on a five-point scale
(1 = definitely untrue or strongly uncharacteristic of me, 5 = very true
or strongly characteristic of me). The reliability for these measures in
the present study was acceptable (acg =.92, asp =.82)
(Dollinger, 2011; Huba & Tanaka, 1983). Furthermore, Pearson corre-
lation was used to explore the relationship between creativity and dif-
ferent kinds of daydreaming. Meanwhile, false discovery rate (FDR)
method was used to correct for multiple comparisons.

2.3 | fMRI data acquisition

Images were acquired using a 3 T Trio scanner (Siemens Medical Sys-
tems). Participants were in supine position and were also instructed to
keep still to control the head movement. BOLD images were obtained
using an Echo Planar Imaging sequence: repetition time = 2,000 ms;
echo time = 30 ms; slices = 32; flip angle = 90°; thickness = 3 mm;
resolution matrix = 64 x 64; field of view = 220 x 220 mm?; slice
gap = 1 mm; and voxel size = 3.4 x 3.4 x 4 mm?®. Resting-state fMRI
collected 242 volumes in total. Meanwhile, task fMRI collected 1,360
volumes in total.

24 | fMRItask

Alternative uses task (AUT) was used in the scanner. Object character-
istics task (OCT) was used as the control task. The AUT asked partici-
pants to generate as many original uses as possible for a familiar
object in 60 s. The OCT task asked participants to generate the typical
characteristics of a familiar object within 60 s. Each task condition had
20 items for both AUT and OCT and every item was presented in a
separate block. Before each item, a cue was given about the task type
(AUT or OCT), which lasted 2 s. There was a fixation point lasting 4-
8 s among the items. During each item, participants were required to
press the button when they thought of an idea. They continued to
formulate ideas until the end of 60 s.

2.5 | Imaging data preprocessing
The preprocessing of task-based fMRI and resting-state fMRI data
were performed using the Data Processing Assistant for Resting-State
fMRI (http://resting-fmri.sourceforge.net/) (Yan & Zang, 2010) based
on SPM8 (Wellcome Department of Imaging Neuroscience, London,
UK; www fil.ion.ucl.ac.uk/spm). The participants whose head motion
was more than 3 mm maximum translation or 3.0° rotation or 0.2 mm
mean FD were excluded.

For the task-based fMRI data, the functional imaging data of each
participant were slice-timing corrected and motion corrected first.

Thereafter, each participant's functional image was normalized to the
Montreal Neurological Institute (MNI) space (EPI template with
resampling voxel size = 3 x 3 x 3 mm°®). Then, spatial smoothing
(6 mm full width at half maximum Gaussian kernel) was conducted to
decrease spatial noise.

For the resting-state data, the first 10 functional volumes were
discarded to suppress equilibration effects. The remaining data were
slice-time adjusted, motion corrected, normalized to the MNI space
(EPI template, resampling voxel size = 3 x 3 x 3mm°®), spatial
smoothed (6 mm full width at half maximum Gaussian kernel), and
detrended. Nuisance covariates including the cerebrospinal fluid,
white matter signals, global mean signals, and Friston 24-parameter
head motion were regressed out (Friston, Williams, Howard,
Frackowiak, & Turner, 1996). Then, band-pass filter (0.008-0.1 Hz)
was performed. Scrubbing procedure was performed to reduce the
potential effect of head motion further. Bad time points were deleted
with a criterion of any volume with FD > 0.5 mm. The ratio of the
remaining time points across all participants was 99%.

2.6 | Functional network construction

For the task-based fMRI data, we used the CONN toolbox (Whitfield-
Gabrieli & Nieto-Castanon, 2012) to construct FC matrices. For each
participant, the preprocessed functional data were submitted to
CONN. A component-based (CompCor) strategy was used to remove
the non-neural sources of confounders. Nuisance covariates such as
principle components associated with white matter, cerebrospinal
fluid, and head movement parameters were regressed out. The data
were temporally filtered with band-pass filter ranging 0.008-0.1 Hz.
We adopted the 264-region parcellation system as network nodes
(Power et al., 2011), which contained 264 regions. The time series of
the brain functional imaging signals data were extracted from each
voxel within each ROI and averaged. A rectified hemodynamic
response function was used in order to account the delay in hemody-
namic response by convolving the regressors for every task condition.
For each task condition, the scans associated with nonzero effects of
the time series were concatenated and weighted by the value of the
corresponding time series (Whitfield-Gabrieli & Nieto-Castanon, 2012).
For the resting-state data, time series of each voxel within each region
in the 264-region parcellation system was extracted and averaged.
Pearson correlation between the time courses of each pair of regions
were calculated for both task-based data and resting-state data, which
resulted in a 264 x 264 connectivity matrix with 34,716 edges for each
participant. Then, the matrixes were normalized using the Fisher's z

transformation.

2.7 | Connectome-based predictive analysis
Leave-one-out cross validation was performed in the task-based data
using relevance vector regression (RVR) to explore the predictive

effect of daydreaming-related FCs on creativity. RVR (Tipping, 2001)
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is a sparse kernel multivariate regression method that uses Bayesian
inference to obtain sparse regression models. Specifically, leave-one-
out cross validation was performed n times (n represents the number
of participants). Each time one participant in the sample was left as a
test set, and the rest of the n-1 participants were used as a training
set. The participants in the training set were used to construct the
brain FC networks associated with daydreaming. In the training set,
feature selection was performed by calculating the relationship
between each subscale score of SIPI and the whole-brain FC using
partial correlation. The effects of gender, age, and mean FD were con-
trolled. A common threshold of p < .05 was used to retain significantly
connections and remove the

correlated functional spurious

Data preprocessing

Resting state FC matrix Daydreaming CBI
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FIGURE 1 Flowchart of analysis process for predictions of the creativity score using daydreaming-related brain functional connectivities

connections. According to the hypothesis, we first used each
subscale-related FCs to predict creativity. Then, we used the combi-
nation of the subscale-related FCs to predict creativity. According to
the results of behavioral analysis, only two subscale scores of
daydreaming, positive-constructive daydreaming and poor attentional
control were included in the analysis.

A predictive model was built that fit a linear regression between
daydreaming-related FCs and CBI scores in the training set. The
model was then applied to a new participant of the test set in a leave-
one-out cross validation procedure to obtained the predicted scores
of the participant in the test set. The prediction performance of the
model was assessed by the Pearson correlation coefficient between

Functional network construction

(FCs). The time series from 264-region parcellation system were extracted and a 264 x 264 FC matrix was constructed for each participant.
Leave-one-out cross validation and 1,000 times permutation tests were performed
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the predicted CBI scores and actual measured CBI scores and statisti-
cal significance. We conducted permutation tests, which randomly
shuffled the label of CBI scores and FC matrixes 1,000 times and
reran the prediction procedure each time to form a null distribution of
r values representing the relationship between the predicted CBI
scores and actual measured CBI scores (permutation test, p < .05).
Considering the AUT task and CBI scores are closely related, although
the features used in the regression models are related to
daydreaming, it is expected that the predictive effect will be signifi-
cant. So we also used resting-state fMRI data to further explore the
predictive effect. The same calculation process was conducted in the
resting-state data. The data analysis processes are shown in Figure 1.

2.8 | Validation analysis
To test the robustness of our findings, we conducted validation analy-
sis. Ten-fold cross validation was applied to examine the predictive
power. Unlike the leave-one-out procedure, 10-fold cross validation
randomly divided the sample into a training set (90% of the whole
sample) and a test set (10% of the whole sample). The prediction pro-
cedure was repeated 100 times given that each time of random divi-
sion of the whole sample brings about the difference in test sets and
training sets (He et al., 2021). The scores of each participant were
averaged to obtain the final prediction score.

We also performed correlation analysis between behavioral mea-
sures (CBI and subscale scores of daydreaming) and FCs. The effects
of gender, age, and mean FD were controlled. The results are shown

in Supporting Information (Figure S1).

3 | RESULTS

3.1 | Behavioral results

The Pearson correlation results of behavioral data are summarized in
Table 1. After FDR correction, in both of the two samples, positive-
constructive daydreaming was positively related to CBI scores and
poor attentional control was negatively related to CBI scores. These
results indicated that the more daydreaming one experienced, the
higher the level of creativity one had. Meanwhile, the poorer atten-
tional control ability one had, the lower creativity score one

performed. In the following fMRI data analysis, we mainly focused on

these two subscales of daydreaming.

3.2 | Results from cross validation

Using leave-one-out cross validation in the first sample, we found that
two subscales of daydreaming-related FCs could significantly predict
individual CBI scores (see Figure 2). When using positive-constructive
daydreaming-related FCs (759 FCs), the r value between actual mea-
sured and predicted CBI scores was 0.232 (p = .030). The FCs mainly
involve nodes in the DMN (e.g., posterior cingulate, region
91, degree = 10; middle temporal gyrus, region 83, degree = 14),
along with the task control network (e.g., middle frontal gyrus, region
196, degree = 12; middle frontal gyrus, region 188, degree = 11) and
the visual network (VN, e.g., middle occipital gyrus, region
149, degree = 19). When using poor attentional control-related FCs
(796 FCs), the r value between actual measured and predicted CBI
scores was 0.286 (p = .007). Meanwhile, the FCs mainly involve nodes
in the DMN (e.g., posterior cingulate, region 91, degree = 17; medial
frontal gyrus, region 110, degree = 25), along with the task control
network (e.g., middle frontal gyrus, region 196, degree = 10; inferior
parietal lobule, region 177, degree = 12), SN (e.g., inferior frontal
gyrus, region 210, degree = 16; anterior cingulate gyrus, region
216, degree = 16), and sensory/somatomotor hand network (SSH,
e.g., precentral gyrus, region 21, degree = 18). The combination of the
subscale-related FCs (1,557 FCs) could also significantly predict indi-
vidual CBI scores. The r value between actual measured scores and
predicted scores was 0.295 (p = .005). The combined FCs mainly
related to nodes in the DMN (e.g., posterior cingulate, region
91, degree = 28; medial frontal gyrus, region 110, degree = 27), task
control network (e.g., middle frontal gyrus, region 196, degree = 28;
inferior parietal lobule, region 177, degree = 16), SN (e.g., inferior
frontal gyrus, region 210, degree = 27; anterior cingulate gyrus,
region 216, degree = 20), and VN (e.g., middle occipital gyrus, region
149, degree = 24).

In the second sample, we further examined the predictive effect
using resting-state data. We found that the subscale of daydreaming-
related FCs (positive-constructive daydreaming-related FCs = 973,
poor attentional control-related FCs = 651) could significantly predict
individual CBI scores (see Figure 3). The Pearson correlation coeffi-

cient between actual and predicted CBI scores was 0.240 (p = .004)

TABLE 1  The correlation between
. . . Pctask GFl:ask PAtask CBltask PCrest GFrest PArest CBIrest
daydreaming and creative behavior score
PC - -
GF 0.281** - 0.203* —
PA 0.058 0.475*** - 0.030 0.269**
CBI 0.267** —0.061 —0.209* - 0.244** —0.001 -0.175* -

Note: *Corrected p < .05, **corrected p < .01, ***corrected p < .001.
Abbreviations: CBI: Creative Behavior Inventory; GF, guilt and fear-of-failure daydreaming; PA, poor
attentional control; PC, positive-constructive daydreaming.
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Predictive results using task fMRI
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FIGURE 2 Predictive results using task-based functional connectivities (FCs). The scatterplots show the correlation between measured and
predicted Creative Behavior Inventory (CBI) scores. The circle plot shows FCs that can predict CBI scores. The top 20% regions with the largest
number of connections were present for visual presentation. AN, auditory network; Cere, cerebellar; COTC, cingulo-opercular task control network;
DAN, dorsal attention network; DMN, default mode network; FPTC, fronto-parietal task control network; MN, memory retrieval network; SN,
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FIGURE 3 Predictive results using resting-state functional connectivities (FCs). The scatterplots show the correlation between measured and
predicted Creative Behavior Inventory (CBI) scores. The circle plot presents FCs that can predict CBI scores. The top 20% regions with the largest
number of connections were present for visual presentation. AN, auditory network; Cere, cerebellar; COTC, cingulo-opercular task control network;
DAN, dorsal attention network; DMN, default mode network; FPTC, fronto-parietal task control network; MN, memory retrieval network; SN,

salience network; Subc, subcortical network; SSH, sensory/somatomotor hand network; SSM, sensory/somatomotor mouth network; VAN, ventral
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and 0.186 (p = .027) when using FCs related to positive-constructive nodes in the DMN (e.g., precuneus, region 89, degree = 19; middle

temporal gyrus, region 129, degree = 18), task control network

daydreaming and poor attentional control, respectively. The FCs =
(e.g., middle frontal gyrus, region 196, degree = 14; middle frontal

related to positive-constructive daydreaming were mainly located in
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gyrus, region 181, degree = 20), SN (e.g., supplementary motor area,
region 213, degree = 29; anterior cingulate gyrus, region
215, degree = 43) and SSH (e.g., postcentral gyrus, region
25, degree = 23). Meanwhile, the FCs related to poor attentional con-
trol were mainly located in nodes in the DMN (e.g., posterior cingu-
late, region 95, degree = 10; medial frontal gyrus, region
110, degree = 13); task control network (e.g., middle frontal gyrus,
region 198, degree = 15; middle frontal gyrus, region 175, degree = 19);
and attention network (e.g., inferior parietal lobule, region
260, degree = 11; middle temporal gyrus, region 257, degree = 14).
The combination of the subscale-related FCs (1,634 FCs) could also sig-
nificantly predict individual CBI scores. The r value between actual mea-
sured and predicted CBI scores was 0.251 (p = .003). The combined
FCs mainly related to nodes in the DMN (e.g., precuneus, region
89, degree = 28; middle temporal gyrus, region 129, degree = 26); task
control network (e.g., middle frontal gyrus, region 196, degree = 23;
middle frontal gyrus, region 181, degree = 28); SN (e.g., supplementary
motor area, region 213, degree = 37; anterior cingulate gyrus, region
215, degree = 45); and attention network (e.g., superior parietal lobule,
region 258, degree = 21; superior temporal gyrus, region
240, degree = 31).

We further examined the overlap between task FCs results and

resting-state FCs results. The results are shown in Figure 4.

3.3 | Results from validation analysis

We performed 10-fold cross validation to examine the predictive
task-based  FCs,
daydreaming-related FCs (r =.224, p = .036) and poor attentional

power. When using positive-constructive

Right

control-related FCs (r =.243, p = .022) predicted CBI scores effec-
tively. The combination of the subscale-related FCs could also signifi-
cantly predict individual CBI scores (r = .258, p = .015). When using
resting-state FCs, FCs related to positive-constructive daydreaming
(r = .243, p = .004) and poor attentional control (r = .207, p = .013)
also predicted CBI scores effectively. Moreover, the combination of
the subscale-related FCs could significantly predict individual CBI
scores (r =.246, p =.003). The prediction results were consistent
with the findings using leave-one-out procedure. These findings
suggested that the prediction performance of daydreaming-related
FCs on creativity scores had high reproducibility.

4 | DISCUSSION

The purpose of the present study is to explore the relationship
between different types of daydreaming and creativity and its neu-
ral basis. At the behavioral level, we found that various types of
daydreaming had different relationships with creativity. Specifi-
cally, positive constructive daydreaming was positively related to
creativity, while poor attention was negatively related to creativity.
Predictive analysis based on task FCs showed that FCs related to
positive constructive daydreaming and FCs related to poor atten-
tion both predicted an individual's creativity score effectively. In
addition, task-related FCs
daydreaming and poor attention could also successfully predict an

combining positive constructive
individual's creativity score. Predictive analysis based on resting-
state FCs showed similar patterns. These results showed that
daydreaming was closely related to creativity, as they shared com-

mon FC basis.
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FIGURE 4 The overlap between task functional connectivities (FCs) results and resting-state FCs results. The brain map on the left shows the
overlap FCs and the node size represents the degree. The right matrix map shows the connection number between brain networks. AN, auditory
network; Cere, cerebellar; COTC, cingulo-opercular task control network; DAN, dorsal attention network; DMN, default mode network; FPTC,
fronto-parietal task control network; MN, memory retrieval network; SN, salience network; Subc, subcortical network; SSH, sensory/
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We found that positive constructive daydreaming was positively
related to CBI scores which meant that the more daydreaming one
experienced, the higher the level of creativity one had. This finding is
consistent with previous studies. Many influential scientists, such as
Newton and Einstein, claimed that they had their moments of inspira-
tion while relinquishing the effort to solve the problem they were
working on (Baird et al., 2012). Empirical research used an incubation
paradigm and found that engaging in an undemanding task during
unusual uses task that maximized daydreaming brought about
improvements in creativity performance (Baird et al., 2012). Positive
constructive daydreaming on behalf of the adaptive nature of
daydreaming and is one of the main styles of daydreaming (McMillan
et al., 2013). Furthermore, positive constructive daydreaming is asso-
ciated with personality trait such as openness to experience and curi-
osity, which is also closely related to creativity (Zhiyan &
Jerome, 1997). Some researchers hold the opinion that positive con-
structive daydreaming benefits creativity through enhanced cognitive
flexibility (Zedelius & Schooler, 2016). Although specific empirical
research about the relationship between daydreaming and creative
thinking is still lacking, recent opinions have claimed that daydreaming
and creativity share similar cognitive mechanisms especially in self-
generated thoughts and deliberate stage (Fox & Beaty, 2019). Our
results further support such claim.

We also found that the poor attentional control of daydreaming
was negatively related to CBI scores which meant that higher scores
in poor attentional control was related to lower scores in creativity
performance. Daydreaming is characterized by a decoupling of atten-
tion from the current task toward unrelated concerns. Several studies
have linked daydreaming to poor performance in tasks about
sustained attention. For example, daydreaming during reading task
results in slow reading speed and prolonging fixation duration
(Foulsham, Farley, & Kingstone, 2013). The damaged attention pro-
cess of daydreaming can lead to serious and destructive conse-
qguences such as traffic accidents or scholastic failure (Galera
et al., 2012; Smallwood, Fishman, & Schooler, 2007). The poor atten-
tional control of daydreaming may have negative effect on the crea-
tivity process. Hao et al. (2015) found that for the high daydreaming
group, during a 20-min creative production task, the originality of
ideas decreased as time passes. But the originality score of the low
daydreaming group kept stable. The authors posited that the cognitive
control processes related to the generation of creative idea were
impaired by daydreaming. Our results further prove a negative corre-
lation between the poor attentional control of daydreaming and
creativity.

In addition to the behavioral findings, the present study used
machine learning approach to explore the common neural basis under-
lying daydreaming and creativity. The results revealed that
daydreaming-related FCs could predict creativity effectively, thus indi-
cating that daydreaming and creativity shared common FC basis. Spe-
cifically, in both task-based fMRI data and resting-state fMRI data,
most FCs were related to the DMN. This observation is consistent
with the findings of previous studies. Existing research on fMRI sug-

gests that the DMN is activated during daydreaming and individuals'

tendency to daydream is correlated with activity in the DMN
(Christoff et al., 2009; Kucyi, Salomons, & Davis, 2013; Mason
et al., 2007). Recent studies further confirm the role of the DMN in
daydreaming using the dynamic FC approach. Kucyi and Davis (2014)
used resting-state data found that daydreaming frequency was posi-
tively correlated with dynamic FCs within the subsystem of DMN.
The DMN also plays a significant role in the cognitive process of crea-
tivity. Previous resting-state fMRI studies revealed that FCs within
the DMN and FCs between the DMN and other brain systems were
related to creativity (Beaty et al., 2014; Beaty, Benedek, Kaufman, &
Silvia, 2015; Chen et al., 2014; Liu et al., 2015). For example, resting-
state research showed that higher creative score was correlated with
stronger FCs in the inferior frontal cortex and the DMN (Beaty
et al., 2014). Sun, Liu, et al. (2019) and Sun, Shi, et al. (2019) found
that the dynamic FCs within the DMN was positively related to crea-
tivity. Task-based research also highlights the role of the DMN in the
creative process. During a task involving divergent thinking, the infe-
rior parietal lobule is positively functional connected to the key
regions of the DMN, including the middle temporal gyrus and the
precuneus (Sun, Shi, et al., 2019). The DMN has been closely related
to the spontaneous generation process of creative thinking, and the
functional coupling between the DMN and other brain systems sup-
port the creative process collaboratively (Jung et al., 2013).

Besides the DMN, our findings showed that the control system
and the attention system also played important parts in the prediction
analysis. Previous studies suggest that daydreaming is associated with
the central EN (Christoff, Irving, Fox, Spreng, & Andrews-
Hanna, 2016). Brain regions related to executive control, such as the
dorsolateral prefrontal cortex and the dorsal anterior cingulate cortex,
exhibit consistently activation when individuals are engaging in
demanding tasks (Duncan & Owen, 2000; Smith & Jonides, 1999).
Task-based fMRI studies have demonstrated that in addition to the
activation of the DMN, daydreaming is also related to the recruitment
of the central EN (Christoff et al., 2009). Furthermore, daydreaming is
related to the attention system. Meta-analysis found common activa-
tion of the posterior inferior parietal lobule during tasks such as
daydreaming, personal goal processing, and episodic future thinking
(Stawarczyk & D'Argembeau, 2015). Researchers also surmise that the
posterior inferior parietal lobule supports bottom-up attentional pro-
cesses (Cabeza, Ciaramelli, & Moscovitch, 2012; Ciaramelli, Grady, &
Moscovitch, 2008; Stawarczyk & D'Argembeau, 2015). The central
EN and the attention network are also related to the cognitive process
of creativity. The central EN modifies and directs self-generated
thoughts to satisfy the specific goals of a task (Beaty et al., 2016). The
attention network and ENs are coupled to support the production of
creative ideas (Beaty et al., 2015). This is also supported by the finding
that the dynamic FCs of the attention network and the DMN are
related to the individual difference of creativity (Sun, Liu, et al., 2019).
The results of the present study further confirm the recruitment of
the attention system and the control system in the cognitive process
of daydreaming and creativity.

The predictive analysis also emphasized the role of SN in

daydreaming and creativity. The hub brain regions of the SN locate in
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the anterior insula and the anterior cingulate cortex. Christoff
et al. (2016) proposed a neural model for spontaneous thought in
daydreaming. They posited that the SN, together with the attention
network and the DMN, could exert automatic constraints on the out-
put of the medial temporal lobe and sensorimotor regions to limit the
fluctuation of thought. Recent studies have shown that during
daydreaming, the brain regions within the DMN, EN, and SN manifest
a dynamic FC pattern (Mooneyham et al., 2017). In the process of cre-
ativity, the SN modulates the interplay between the DMN and the
central EN (Jung et al., 2013). Our results are consistent with these
studies and further link daydreaming and creativity through the FC of
the SN.

Besides the DMN, EN, and SN, the present study also found that
the common brain basis of daydreaming and creativity was related to
networks such as SSH and VN. These primary sensory/somatomotor
networks are typically not involved in daydreaming and creativity. But
in this study, these networks were functional connected to DMN and
SN. It is possible that both of the daydreaming and creativity involve
dealing with information from external sensory input (Pisapia, Bacci,
Parrott, & Melcher, 2016; Schooler et al., 2011). The external sensory
information is inputted from the sensory/somatomotor networks and
is subsequently processed by DMN and SN.

In our findings, positive constructive daydreaming and poor
attentional control had opposite relationship with creativity. The
opposite correlations have effect on the location of FCs and the cor-
relation of these FCs and behavioral measures. FCs positively corre-
lated with positive constructive daydreaming may be also positively
correlated with creativity, while FCs positively correlated with poor
attentional control may be negatively correlated with creativity. But
it is worth noting that both positive constructive daydreaming and
poor attentional control are used to select FCs, and the prediction
analysis showed that these selected FCs are effective in predicting
creativity. Therefore, there is a positive correlation between the
predicted value and the measured value. Notably, the prediction
model of task-based fMRI and resting-state fMRI showed a similar
pattern. The common FC pattern of daydreaming and creativity was
similar in task and resting state. This outcome is consistent with our
previous study, which revealed that the FCs between the subsystem
of DMN and frontal-parietal network during divergent thinking task
are positively correlated with those FCs during resting state (Shi
et al., 2018). Our findings further suggest that both in creativity task
and resting state, daydreaming and creativity share common FCs
basis. We also found that the FCs related to positive constructive
daydreaming and the FCs related to poor attentional control
predicted creativity effectively. When combining the FCs related to
positive constructive daydreaming and the FCs related to poor atten-
tional control, the predictive power was higher, thus representing
better predictive effect. These results demonstrated the importance
of combining different types of daydreaming when predicting
creativity.

This study has some limitations. One limitation is that only adults
are used. Although research about adults is also meaningful, research

involving children and adolescents can bring insight into the common

development trajectory of daydreaming and creativity. Another limita-
tion is the research design. Daydreaming and creativity are measured
separately in the present study. Future research should use fMRI task
that involves both the cognitive process of daydreaming and creativity
to further explore the common neural basis underling daydreaming
and creativity.

5 | CONCLUSIONS

This study used machine learning methods and found that
daydreaming and creativity shared a common neural basis. The FCs
related to positive constructive daydreaming and the FCs related to
poor attentional control predicted creativity effectively. The com-
mon FCs were mainly related to the DMN, the attention system and
the control system. Our research used neuroscience methods to
prove the existence of a common cognitive neural mechanism
between daydreaming and creativity. Furthermore, this study also
expands the existing theories by revealing the multifaceted and com-
plex nature of daydreaming and creativity. Our findings provide
insight into the complex relationship between daydreaming and cre-
ativity from the perspective of neural basis. Future research can
attempt to improve creativity by taking advantage of the positive
aspect of daydreaming and avoiding the negative aspect of
daydreaming.
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